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ABSTRACT 
 
This paper evaluates the potential of embedded Graphic 
Processing Units in the Nvidia’s Tegra K1 for onboard 
processing. The performance is compared to a general 
purpose multi-core CPU and full fledge GPU accelerator. 
This study uses two algorithms: Wavelet Spectral Dimension 
Reduction of Hyperspectral Imagery and Automated Cloud-
Cover Assessment (ACCA) Algorithm. Tegra K1 achieved 
51% for ACCA algorithm and 20% for the dimension 
reduction algorithm, as compared to the performance of the 
high-end 8-core server Intel Xeon CPU with 13.5 times 
higher power consumption. 
 

Index Terms— remote sensing, GPU, Tegra K1, ACCA, 
dimension reduction 
 

1. INTRODUCTION 
 

This paper evaluates the suitability of new embedded 
Graphic Processing Units (GPU) in the Nvidia’s Tegra K1 
(K1) System-on-Chip (SoC) with typical Typical Design 
Power (TDP) under 7W [1] for onboard processing. The 
performance of this SoC is compared to two modern High 
Performance Computing (HPC) architectures: (1) a general 
purpose multi-core CPU (8-core Sandy Bridge E5-2470, 
2.3GHz, TDP 95W [2]) and (2) GPU accelerator (Nvidia 

Tesla K20 (K20), TDP 225W [3]). For this study, we selected 
two algorithms:  

1. Wavelet Spectral Dimension Reduction of 
Hyperspectral Imagery: The principle of this method is to 
apply a discrete wavelet transform to hyperspectral data in the 
spectral domain and at each pixel location. The optimal level 
of wavelet decomposition is computed adaptively for each 
pixel. See [4] for more details. 

2. Automated Cloud-Cover Assessment (ACCA) 
Algorithm: The ACCA algorithm determines and rates the 
overall cloud cover of an image through 2 steps: Pass-One 
isolates clouds from non clouds by utilizing eight threshold-
based filters, then Pass-Two resolves the detection 
ambiguities from Pass-One by computing global statistics 
over the image. See [5] for more details.  

This paper shows that the performance achieved using this 
new SoC designed for battery powered devices is comparable 
to HPC hardware with significantly higher power 
consumption. 
 

2. HARDWARE ARCHITECTURES 
 
The Intel Xeon Sandy Bridge CPU is a general purpose 
processor designed to handle a wide variety of workloads. It 
has a small number, up to 8, of high performance cores with 
64 bit wide SIMD (Single Instruction Multiple Data) units 
and large on-chip caches (~22 MB) designed to minimize the 
effect of limited memory bandwidth (38.4 GB/s). 

 Nvidia Tegra K1 (GPU part) 8-core Intel Sandy Bridge E5-2470 Nvidia Tesla K20 GPU 
Architecture type embedded SoC with Kepler GPU  general purpose CPU for HPC GPU accelerator for HPC 
Frequency  0.852 GHz – GPU part  2.3GHz 0.706GHz 
Number of Cores 192 SP scalar cores – GPU part  64 SP / 32 DP cores (8 SIMD cores)  2496 SP / 832 DP scalar cores  
On-Chip Caches  64 KB L1 per 192 SP cores  

128KB L2 per chip 
32+32KB L1, 256 KB L2 per SIMD core  
20 MB L3 per chip 

64 KB L1 per 192 SP cores;  
1536KB L2 per chip 

SIMD width 32 for both SP and DP 8 for SP and 4 for DP 32 for both SP and DP 
Peak Performance 327 SP / 13 DP GFLOPS 147 SP / 74 DP GFLOPS 3524SP/1160DP GFLOPS 
Mem. Size; Bandwidth 2GB at Jetson TK1; 14.9 GBPS up to 384 GB; 38.4 GBPS 5GB; 208 GBPS 
TDP 7W (SoC + DRSM only) 95W (CPU only)  225W (accelerator only)  

Table 1. Main parameters of the selected hardware architectures 
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The performance is achieved by the SIMD units which can 
process 4 Double Precision (DP) or 8 Single Precision (SP) 
values per core per clock cycle, or 32 DP/64 SP operations 
per clock per chip. For more details see Table 1.  
Both K20 and the GPU part of K1 are based on the NVidia 
Kepler architecture. Designed as throughput architecture, it 
has small L1 and L2 caches but fast memory interface. 
Processing cores are organized in Streaming Multiprocessors 
(SMX). Each SMX has 6 groups of 32 SP cores (192 cores 
total), that can be seen as 6 SIMD units.  K20 has additional 
64 DP cores, but not K1. The K20 contains 13 SMXs while 
K1 only 1 SMX. In terms of peak performance in SP the K1 
is 10.7 times slower than K20, but 2.2 times faster than the 
CPU. In terms of memory bandwidth K1 is 13.9 times slower 
than K20 and 2.5 times slower than the CPU. But K1 is a SoC 
designed for mobile and embedded systems with low power 
consumption. The entire Jetson TK1 development board [6] 
consumes ~12.5W (SoC + DRAM ~7W) under full load. 
 

3. IMPLEMENTATION AND OPTIMIZATION 
 

The main focus of the optimization part is to explore 
techniques that allow efficient utilization of the parallel 
hardware. Even though the architectures are different, they all 
use SIMD units. This means that data is processed as short 
vectors where identical operations are executed on all 
elements. The number of elements per vector, or SIMD 
width, is 4 DP or 8 SP values for CPU and 32 SP/DP for 
GPUs, see Table 1. The efficiency of vector processing is 
significantly reduced by the branching in the code caused by 
conditional statements. 

Both algorithms have a very high degree of parallelism 
defined by the number of pixels and can be efficiently 
vectorized. In case of dimension reduction algorithm, the 
vectorization is used across spectral bands within a pixel, 
when computing wavelet coefficients, while pixels are 
processed independently. There are no conditional 
statements, no branching, within the vectorized section of the 

code that can reduce vectorization efficiency. For each pixel, 
the algorithm requires fast access to original data, reduced 
data and reconstructed data as these are accessed multiple 
times. Therefore it is very efficient to keep it inside the on-
chip caches. This can be achieved in case of the CPU, but 
K20 and K1 do not have enough on-chip storage which 
results in performance penalty. This algorithm was chosen to 
evaluate the effect of K1’s small caches on the performance. 

On the other hand, the ACCA algorithm contains a large 
number of conditional statements (one for each threshold-
based filter), controlled by an input data. This results in a 
significant processing time variation depending on cloud 
coverage, see Figure 3 left. This is a problem for on-board 
real-time processing systems. To minimize this effect and 
also to maximize the performance of the SIMD units, two 
new versions of the ACCA algorithm were developed: (1) 
Vectorized without Branching (VNB) and (2) Vectorized 
with Branching (VWB). The VWB algorithm can utilize 
SIMD units but still exhibits processing time variation. In the 
VNB algorithm all threshold-based filters are redesigned to 
avoid branching by setting specific bits of a register. At the 
end, the register contains the value describing whether the 
pixel is a cloud or not. This means that all filters are executed 
for every pixel (this is not the case of the original ACCA 
algorithm), which creates more work. But since this workload 
can be processed much more efficient by the SIMD units, the 
VNB algorithm delivers faster processing. In the case of 
Tegra K1, the processing time variation as a function of cloud 
coverage is reduced from ~9% to 0.2%, and the processing 
time itself is reduced by 8.3% when compared to the VWB 
version. 
The performance of the proposed algorithms also depends on 
the length of the vector processed per SIMD unit. In case of 
the CPU this parameter is called vector length. In CUDA 
model for GPUs the same parameter is described by number 
of threads per block. See Figure 1 and 2 for optimal 
configuration for all three architectures. These figures also 
show the variation for different vector lengths.    

  
Fig. 1. Optimal vector length for the ACCA algorithm 
running on CPU is 32.  

Fig. 2. Optimal number of threads per block for ACCA on 
Tesla K20 and Tegra K1 is 128.  
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4. RESULTS 
 

The proposed VNB version of the ACCA algorithm 
brings three major improvements: (1) enables the execution 
of the algorithm on the K20 and K1 GPUs; (2) significantly 
improves the performance, see speedup up to 5.7 for CPU in 
Figure 3, and (3) reduces the processing time variation for 
different scenes, from 15.2% of the original algorithm to 
1.0% for CPU (see Figure 4), 0.1% for K20 and 0.2% for K1 
(see Figure 5). In all figures, the 6 different colors represent 
datasets with cloud coverage varying between 1% and 66%. 

The performance of the VNB version of the ACCA 
algorithm for all three architectures and all datasets is shown 
in Figure 6. The CPU is used as a baseline, with speedup 

equal to 1, and K1 and K20 are compared to it. As expected, 
the high performance K20 is on average 5.8 times faster, but 
the K1, with 13 times lower power consumption achieved 
51% performance of the high-end 8-core server CPU.  

The wavelet spectral dimension reduction algorithm 
performance on all three architectures is shown in Table 2. It 
was tested in a data independent fashion, so that all pixels are 
reduced by 4 wavelet decomposition levels. For each level 
the reconstruction to the original size and evaluation using a 
cross-correlation function is performed. Unlike ACCA this 
algorithm efficiently utilizes large CPU caches while the 
throughput GPU architecture is less efficient. This translates 
into the performance of K1 being about 20% of the CPU. 
Taking into account the 13 times lower power budget, the 

  
 

Fig. 3. Speedup achieved by vectorization for CPU is between 
4.7 and 5.8. The processing time variation of original 
algorithm for different input data is 15.2%. The values above 
the bars show the speedup for different scenes with various 
cloud coverage from 1% to 66%. 
 

 

Fig. 4. Processing time variation based on input data with 
various cloud coverage 1%, 13%, 26%, 37%, 55% and 66% 
for CPU. The values above the bars describe the difference in 
processing time: negative values means slower than 
vectorized w/o branching algorithm.  

  

  
 

Fig. 5.  Processing time variation based on input data with various cloud coverage 1%, 13%, 26%, 37%, 55% and 66% for 
Tesla K20 and Tegra K1 GPUs. The values above the bars describe the difference in processing time: negative values mean 
slower than vectorized no-branching algorithm. Image size is 2048x2048 pixels.  
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new Tegra K1 SoC has a great potential for onboard 
processing of complex algorithms. 
 

5. CONCLUSIONS 
 
This paper evaluates the feasibility of a new mobile many-
core architecture, the 192-core GPU of the Tegra K1 SoC, for 
onboard processing, using two remote sensing algorithms. In 
order to gain optimal performance we had to redesign the 
original algorithms to support SIMD processing. Tegra K1 
achieved (1) 51% for ACCA algorithm and (2) 20% for the 
dimension reduction algorithm, as compared to the 
performance of the high-end 8-core server Intel Xeon CPU. 
Both algorithms use only a GPU part of the SoC, leaving the 
4+1 ARM Cortex A15 general-purpose cores available for 
other tasks. 
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Fig. 6. Chip-to-chip performance comparison of the vectorized ACCA algorithm without branching for image size 
2048x2048 pixels. 
 

Architecture Spectral Bands 
per pixel [-] 

Processing time 
[s] 

Performance 
[Mpix per second] 

Speedup over CPU 
[-] 

8-core CPU 
128 0.0303 3.14 1 
256 0.0394 2.42 1 
512 0.0627 1.52 1 

Nvidia Tesla 
K20 

128 0.0118 8.08 2.57 
256 0.0177 5.39 2.23 
512 0.0411 2.32 1.53 

Nvidia Tegra 
K1 

128 0.6133 0.61 0.20 
256 0.4225 0.42 0.19 
512 0.1793 0.18 0.17 

 
Table 2. Chip-to-chip performance comparison of the Wavelet Spectral Dimension Reduction algorithm for image size 

100,000 pixels. 


